Abstract

Numerous prevalence studies and outbreaks of Vibrio parahaemolyticus infection have been extensively reported in shellfish and crustaceans. Information on the quantitative detection of V. parahaemolyticus in finfish species is limited. In this study, short mackerels (Rastrelliger brachysoma) obtained from different retail marketplaces were monitored with the presence of total and pathogenic strains of V. parahaemolyticus. Out of 130 short mackerel samples, 116 (89.2%) were detected with the presence of total V. parahaemolyticus and microbial loads of total V. parahaemolyticus ranging from <3 to >105 MPN/g. Prevalence of total V. parahaemolyticus was found highest in wet markets (95.2%) followed by minimarkets (89.1%) and hypermarkets (83.3%). Pathogenic V. parahaemolyticus strains (tdh+ and/or trh+) were detected in 16.2% (21 of 130) of short mackerel samples. The density of tdh+ V. parahaemolyticus strains were examined ranging from 3.6 to >105 MPN/g and microbial loads of V. parahaemolyticus strains positive for both tdh and trh were found ranging from 300 to 740 MPN/g. On the other hand, antibiotic susceptibility profiles of V. parahaemolyticus strains isolated from short mackerels were determined through disc diffusion method in this study. Assessment of antimicrobial susceptibility profile of V. parahaemolyticus revealed majority of the isolates were highly susceptible to ampicillin sulbactam, meropenem, ceftazidime, and imipenem, but resistant to penicillin G and ampicillin. Two isolates (2.99%) exhibited the highest multiple antibiotic resistance (MAR) index value of 0.41 which shown resistance to 7 antibiotics. Results of the present study demonstrated that the occurrence of pathogenic V. parahaemolyticus strains in short mackerels and multidrug resistance of V. parahaemolyticus isolates could be a potential public health concerns to the consumer. Furthermore, prevalence data attained from the current study can be further used to develop a microbial risk assessment model to estimate health risks associated with the consumption of short mackerels contaminated with pathogenic V. parahaemolyticus.

Highlights

  • Vibrio parahaemolyticus is found naturally in the marine environment and may accumulate in seafood especially shellfish at high concentrations

  • The main purpose of this study was to determine the prevalence of total and pathogenic V. parahaemolyticus in short mackerels purchased from different wet markets, hypermarkets, and minimarkets in the state of Selangor of Malaysia by using Most Probable Number (MPN)-PCR methods and to evaluate the antibiotic susceptibility profiles of V. parahaemolyticus isolates obtained from the short mackerels

  • Out of 390 short mackerel tested samples, 310 (79.5%) samples were detected with the presence of total V. parahaemolyticus and the microbial loads was between 105 MPN/g

Read more

Summary

Introduction

Vibrio parahaemolyticus is found naturally in the marine environment and may accumulate in seafood especially shellfish at high concentrations. Consumption of foods contaminated with high concentration of total V. parahaemolyticus and/or pathogenic V. parahaemolyticus can cause gastrointestinal infections. Major syndromes caused by V. parahaemolyticus include gastroenteritis, wound infection, and septicaemia. Typical symptoms of the gastroenteritis may include abdominal pain, diarrhea, nausea, and fever. Based on the Foodborne Diseases Active Surveillance Network (FoodNet) data and Morbidity and Mortality Weekly Report (MMWR) published by Centers for Disease Control and Prevention (CDC) in the United States during the year 2016, V. parahaemolyticus is the major foodborne pathogen compared to other Vibrio isolates and it is estimated V. parahaemolyticus causes about 34,664 episodes of domestically acquired foodborne illness annually in the United States (Scallan et al, 2011; Huang et al, 2016)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.