Abstract

The Kungurian ocean-climate system has received little attention, but a new compilation of geochemical and paleoclimatic proxies suggest more complex climate dynamics during the Late Paleozoic icehouse–greenhouse transition than previously considered. Here, integrated carbon isotope stratigraphical, sedimentological, and geochemical data across two Early–Middle Permian successions in the Youjiang Basin, South China, is presented. These proxies indicate widespread anoxia below or near the water-sediment interface in South China during the Kungurian. High primary productivity, high sedimentation rate, and a relative sea-level rise are here proposed as being responsible for this process in the late Kungurian, but cannot account for the remaining anoxia at cycle boundaries. We put forward a hypothesis that divergent climate trends between the tropics and Gondwana might have played an important role in ocean stagnation and prevailing O2-deficient conditions in and probably outside South China during the Kungurian. The termination of anoxia in this region during the latest Kungurian is attributed to an intensification of oceanic circulation, a rise in atmospheric pO2 concentrations, a sea-level drop, depressed primary productivity, and low sedimentation rates. This study calls for further high-resolution sedimentological and geochemical investigations on the paleotropics outside South China, in order to elucidate the icehouse-greenhouse transition at the global scale.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.