Abstract

Plant protein fibrils have recently attracted considerable attention due to their superior mechanical and interfacial properties. The objective of this study was to evaluate the feasibility of low-frequency magnetic field (LF-MF) pretreatment in enhancing the conversion and functional characteristics of the amyloid-like fibrils derived from pea globulin (PG), which was considered a sustainable hypoallergenic protein. The results showed that LF-MF-treated PG (MPG) assembled into longer amyloid-like fibrils compared with native PG (NPG). The MPG presented similar gelling, emulsifying, and foaming properties to the NPG, while the fibril samples exhibited significantly improved functional properties. Moreover, the amyloid-like fibrils generated from the MPG (MPGF) showed large aspect ratios accompanied by superior solubility, molecular flexibility, emulsion stability, and gelling properties. The improved functional properties of the amyloid-like fibrils generated from the MPG can provide a promising outlook for expanding the applications of the PG in food, medicine and other fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call