Abstract

The noble gas argon induces cardioprotection in a rabbit model of myocardial ischemia and reperfusion. However, no studies in human primary cells or subjects have been performed so far. We used human cardiac myocyte-like progenitor cells (HCMs) to investigate the protective effect on the cellular level. HCMs were pretreated with 30% or 50% argon before oxygen-glucose deprivation (OGD) and reperfusion. We evaluated apoptotic states by flow cytometry and the activation of mitogen-activated protein kinase (MAPKs) members extracellular signal-regulated kinase (ERK), c-jun N-terminal kinase (JNK), p38 MAPkinase, and protein kinase B (Akt) by Westernblot analysis and by activity assays of downstream transcription factors. Specific inhibitors were used to proof a significant participation of these pathways in the protection by argon. Beneficial effects were further assessed by TdT-mediated dUTP-biotin nick end labeling (TUNEL) assay, lactate dehydrogenase (LDH), mitochondrial deoxyribonucleic acid (mtDNA), and cytokine release. Pretreatment with 30% or 50% argon for 90 min before OGD resulted in a significant protection of HCMs against apoptosis. This effect was reversed by the application of MAPK and Akt inhibitors during argon exposure. Argon 30% reduced the release of LDH by 33% and mtDNA by 45%. The release of interleukin 1β was reduced by 44% after OGD and more than 90% during reperfusion. Pretreatment with argon protects HCMs from apoptosis under ischemic conditions via activation of Akt, Erk, and biphasic regulation of JNK. Argon gas is cheap and easily administrable, and might be a novel therapy to reduce myocardial ischemia-reperfusion injury.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.