Abstract

In this work, HCl catalyzed ethylene glycol–water pretreatment (HCl/EG-H2O) of sugarcane bagasse (SCB) was explored with response surface methodology (RSM) and single factor analysis, which aim to investigate the influence of pretreatment variable on pretreated solid cellulose enzymatic conversion. The result showed that HCl/EG-H2O pretreatment could selectively extract ∼89.9 % xylan and ∼61.2 % lignin in SCB, meanwhile maintain a relatively high cellulose retention (∼86.8 %). Pretreatment of SCB at 120 °C for 60 min with 1.00 % HCl and 90 % EG obtained the pretreated solid having maximum cellulose enzymatic conversion of 88.7 % under 10 FPU/g enzyme dosage, this enhancement of cellulose enzymatic conversion mainly attributed to structure change of SCB in pretreatment. The adding of enzymatic additives into the hydrolysis process could not only improve hydrolysis efficiency but also lower the enzyme dosage. Besides, the linear relationship between substrate characteristic parameters (such cellulose content, lignin removal rate etc.) and cellulose conversion were observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.