Abstract

The most potential feedstock for industrial civilizations is lignin derived from biomass. The most prevalent aromatic polymer on earth and one of the most difficult materials for commercial application is lignin. Reducing sugars, which can be used to make biofuels and some other products, are among the many chemicals that lignocellulose biomass releases during pretreatment. Lignocellulosic material (LCMS) is a material that is easily accessible, renewable, recyclable, and plentiful. Sustainability has gained traction as a result of climate change and environmental harm. The need for a flexible strategy to meet rising global energy demands has led many academics to concentrate on renewable biofuel made from sustainable sources. Construction of industrial biorefineries using lignocellulose feedstock for biofuel production and other bioproducts. The effective and scalable valorization of lignin is one of the main issues. Its presence prevents the biochemical conversion of lignocelluloses into fuels and chemicals, which depends on the extraction of cellulose and hemicellulose. To produce sustainable energy, lignocellulosic biomass must undergo pretreatment to speed up fragmentation and reduce lignin content. Temperature, time, particle size, and solid loading are the controlling factors for lignin extraction. This study covers the working conditions, parameters, yield percentages, techno-economic evaluations, challenges, and recommended next steps for the direct conversion of biomass to hydrogen. It detailed how green pre-treatment techniques can be used to produce green biofuels, and prospects for the application of green pre-treatment technologies on an industrial scale are also provided. The sustainable lignocellulose biorefinery has a path forward thanks to effective lignin recovery and valorization techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call