Abstract

The management of wastewater produced from alkali/surfactant/polymer (ASP) flooding, known for its considerable volume and high emulsion stability, poses a challenge in oilfields globally. This study has demonstrated that ionizing irradiation is a promising pretreatment method for ASP wastewater to improve oil-water separation. After a settling time of 1 h, approximately 69.5% of oil remained in the raw ASP wastewater, while only 20–29% of the oil persisted in the liquid phase following radiation at absorbed doses ranging from 0.1 to 5.0 kGy. A noticeable increase in the size of oil droplets and reduction in turbidity was observed after irradiation. Further analysis revealed that the combination of surfactant, sodium dodecyl sulfate (SDS) and alkali exhibits a synergistic impact, leading to a substantial reduction in interface tension of ASP wastewater. Notably, ionizing irradiation induces several key changes that are crucial for efficient demulsification. The transformation of the wastewater's rheological behavior from pseudoplastics to a Newtonian fluid accompanied by a reduction in viscosity, the increased interfacial tension at both liquid-air and liquid-oil interfaces, along with the degradation of organic components such as partly hydrolyzed polyacrylamide (HPAM) and SDS, all contribute to the coalescence and floatation of oil droplets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call