Abstract

Adsorption and coagulation were commonly used to alleviate reverse osmosis (RO) membrane fouling caused by dissolved organic matters (DOM), but the effects of changed composition and structure of DOM in dyeing wastewater after adsorption and coagulation on RO membrane fouling have seldom been studied. This study aimed at resolving the mechanism how the RO membrane fouling during dyeing wastewater treatment was alleviated by using adsorption and coagulation. The dyeing wastewater caused serious RO membrane fouling. Pretreatment with granular activated carbon (GAC), polyferric sulfate (PFS) and polyaluminum chloride (PACl) were conducted. It was shown that GAC could remove most of the DOM (95%) and preferred to adsorb protein, hydrophobic neutrals and fluorescent compounds. Both coagulants of PFS and PACl preferred to remove polysaccharides (the removal rate was 9–19% higher than that of DOM), high-MW compounds and these compounds with high fouling potential. Afterwards, the RO membrane fouling potential of the dyeing wastewater was tested. The GAC and PFS performed well to alleviate fouling. After GAC treatment, the decline rate of RO flux was similar to that of raw wastewater after 6-fold dilution. With pretreatment by PFS or PACl, the fouling potential of dyeing wastewater was much lower than that of raw wastewater after diluted to the same DOM content. Changes in polysaccharides content in the DOM had more effects on RO membrane fouling than that of proteins after these pretreatment. Although the DOM changed significantly after pretreatment, the fouling type was still intermediate blocking.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call