Abstract
The effects of high temperature pretreatments on the activity of MgO and Li/MgO catalysts for the oxidative coupling of methane have been studied. The MgO powder catalyst exhibited a turnover frequency of 3.0×10−3 molecules/sites, at 990K, whereas the Li/MgO catalyst showed a turnover frequency of 7.0×10−2 molecules/sites, under the same reaction conditions. The initial C2 formation rate was observed to increase with pretreatment temperature over the MgO catalyst, supporting our previous proposal that F-type defects are responsible for methane activation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.