Abstract
The biodegradation of polystyrene (PS), a type of plastic with aromatic rings in its polymer chain, is a critical environmental goal worldwide. Microbial degradation of PS has been reported, but the underlying mechanisms are poorly understood. Here, we constructed a microcosm wetland containing PS plastic. We isolated six highly efficient PS plastic–degrading bacterial strains and created a microbial consortium (MCs) consisting of these strains. After a 30-day incubation period, MCs-treated PS exhibited hallmarks of degradation, including –CO– formation, reduced hydrophobicity, surface porosity, and 20 % weight loss. The efficiency of PS degradation was enhanced by using a combination of physical-chemical pretreatment and biological methods, increasing the microbial degradation rate by 20 %. Antioxidant 2246 (C23H32O2) was detected in the culture supernatant via GC-MS. Metatranscriptomic sequencing analysis provided insight into the possible metabolic pathway of PS degradation by the composite bacteria. We identified 31 highly expressed genes encoding proteins that function in carbon metabolism pathways and 34 unique proteases which catalyze the cleavage of long polymer chains. The resulting small molecules are absorbed and further degraded intracellularly by enzymes such as coenzyme synthase, hydratase, transferase, carboxylase, and dehydrogenase. These findings lay the foundation for the efficient and sustainable degradation of PS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.