Abstract

Although stem cell transplantation and single-gene therapy have been intensively discussed separately as treatments for myocardial infarction (MI) hearts and have exhibited ideal therapeutic efficiency in animal models, clinical trials turned out to be disappointing. Here, we deliver sarcoplasmic reticulum Ca2+-ATPase 2a (SERCA2a) and connexin 43 (Cx43) genes simultaneously via an ultrasound-targeted microbubble destruction (UTMD) approach to chronic MI hearts that have been pre-treated with bone marrow mesenchymal stem cells (BMSCs) to amplify cardiac repair. First, biotinylated microbubbles (BMBs) were fabricated, and biotinylated recombinant adenoviruses carrying the SERCA2a or Cx43 gene were conjugated to the surface of self-assembled BMBs to form SERCA2a-BMBs, Cx43-BMBs or dual gene-loaded BMBs. Then, the general characteristics of these bubbles, including particle size, concentration, contrast signal and gene loading capacity, were examined. Second, a rat myocardial infarction model was created by ligating the left anterior descending coronary artery and injecting BMSCs into the infarct and border zones. Four weeks later, co-delivery of SERCA2a and Cx43 genes to the infarcted heart were delivered together to the infarcted heart using the UTMD approach. Cardiac mechano-electrical function was determined 4 wk after gene transfection, and the infarcted hearts were collected for myocardial infarct size measurement and detection of expression of SERCA2a, Cx43 and cardiac-specific markers. Finally, to validate the role of BMSC transplantation, MI rats transplanted or not with BMSCs were transfected with SERCA2a and Cx43, and the cardiac mechano-electrical function of these two groups of rats was recorded and compared. General characteristics of the self-assembled gene-loaded BMBs were qualified, and the gene loading rate was satisfactory. The self-assembled gene-loaded BMBs were in microscale and exhibit satisfactory dual-gene loading capacity. High transfection efficiency was achieved under ultrasound irradiation in vitro. In addition, rats in which SERCA2a and Cx43 were overexpressed simultaneously had the best contractile function and electrical stability among all experimental groups. Immunofluorescence assay revealed that the levels of SERCA2a and/or Cx43 proteins were significantly elevated, especially in the border zone. Moreover, compared with rats that did not receive BMSCs, rats pre-treated with BMSCs have better mechano-electrical function after transfection with SERCA2a and Cx43. Collectively, we report a promising cardiac repair strategy for post-MI hearts that exploits the providential advantages of stem cell therapy and UTMD-mediated localized co-delivery of specific genes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call