Abstract
The adoption of electronic health records (EHR) has become universal during the past decade, which has afforded in-depth data-based research. By learning from the large amount of healthcare data, various data-driven models have been built to predict future events for different medical tasks, such as auto diagnosis and heart-attack prediction. Although EHR is abundant, the population that satisfies specific criteria for learning population-specific tasks is scarce, making it challenging to train data-hungry deep learning models. This study presents the Claim Pre-Training (Claim-PT) framework, a generic pre-training model that first trains on the entire pediatric claims dataset, followed by a discriminative fine-tuning on each population-specific task. The semantic meaning of medical events can be captured in the pre-training stage, and the effective knowledge transfer is completed through the task-aware fine-tuning stage. The fine-tuning process requires minimal parameter modification without changing the model architecture, which mitigates the data scarcity issue and helps train the deep learning model adequately on small patient cohorts. We conducted experiments on a real-world pediatric dataset with more than one million patient records. Experimental results on two downstream tasks demonstrated the effectiveness of our method: our general task-agnostic pre-training framework outperformed tailored task-specific models, achieving more than 10% higher in model performance as compared to baselines. In addition, our framework showed a potential to transfer learned knowledge from one institution to another, which may pave the way for future healthcare model pre-training across institutions.
Highlights
We proposed Claim Pre-Training (Claim-PT), a two-stage framework that first uses Visit Prediction (NVP) and Categorial Prediction (CP) as objectives to pre-train the initial parameters of the transformer-based neural network
The criteria and model performance are presented in detail for each of the tasks
We conducted three experiments to validate the effectiveness of our Claim-PT framework, i.e., suicide risk prediction task, asthma exacerbation prediction, and auto diagnosis task
Summary
Our goal is to learn a universal representation of claims data that can transfer knowledge with little adaptation to a wide range of population-specific tasks. We aim to leverage the patient records that are excluded in the cohort selection process to boost the model performance on population-specific predictive tasks
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.