Abstract

Word embedding aims to learn a continuous representation for each word. It attracts increasing attention due to its effectiveness in various tasks such as named entity recognition and language modeling. Most existing word embedding results are generally trained on one individual data source such as news pages or Wikipedia articles. However, when we apply them to other tasks such as web search, the performance suffers. To obtain a robust word embedding for different applications, multiple data sources could be leveraged. In this paper, we proposed a two-side multimodal neural network to learn a robust word embedding from multiple data sources including free text, user search queries and search click-through data. This framework takes the word embeddings learned from different data sources as pre-train, and then uses a two-side neural network to unify these embeddings. The pre-trained embeddings are obtained by adapting the recently proposed CBOW algorithm. Since the proposed neural network does not need to re-train word embeddings for a new task, it is highly scalable in real world problem solving. Besides, the network allows weighting different sources differently when applied to different application tasks. Experiments on two real-world applications including web search ranking and word similarity measuring show that our neural network with multiple sources outperforms state-of-the-art word embedding algorithm with each individual source. It also outperforms other competitive baselines using multiple sources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.