Abstract

We study the dynamics of a quantum Ising chain after the sudden introduction of a nonintegrable long-range interaction. Via an exact mapping onto a fully connected lattice of hard-core bosons, we show that a prethermal state emerges and we investigate its features by focusing on a class of physically relevant observables. In order to gain insight into the eventual thermalization, we outline a diagrammatic approach which complements the study of the previous quasistationary state and provides the basis for a self-consistent solution of the kinetic equation. This analysis suggests that both the temporal decay towards the prethermal state and the crossover to the eventual thermal one may occur algebraically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.