Abstract
This paper presents the results of an experimental campaign aimed at improving the innovative technique of continuos basalt fiber (BF) stitching in order to repair the masonry panels damaged by seismic events or to enhance the seismic behavior of unreinforced masonry walls. The masonry panels were tested under out-of-plane actions, one of the common way of failure for masonry walls during an earthquake. The most significant change introduced respect to the system already tested in previous studies, is the presence of pre-tensioned elements and mechanical anchorage of the BF ropes, always with the end of proposing a dry retrofitting system. The results indicate the effectiveness of this, increasing the performance of masonry wall specimens under out-of-plane actions respect to the damaged and unreinforced conditions. Besides, this technique potentially appears fully sustainable, because it is cheap, compatible, reversible, fire, and chemical resistant, it improves but not replaces original materials and, finally, it does not substantially use synthetic adhesives. All these reasons make this novel application of BF ropes fully sustainable and specialized to architectural heritage restoration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.