Abstract

Learning plays an important role in the brain to make it adaptive to dynamical environments. This paper presents a presynaptic spike-driven spike timing-dependent plasticity (STDP) learning rule in the address domain for a neuromorphic architecture using a synaptic connectivity table in an external memory at a local routing node. We contribute two aspects to the implementation of the learning rule for extended large-scale neuromorphic systems. First, we reduced buffer sizes required for tracing a spike train which is required to pair all presynaptic and postsynaptic spike for an STDP time window. This method implements an exponential decay STDP function with two parameters: the latest timestamp and the synaptic modification rate at the latest timestamp. It reduces the required buffer size compared to previous works. Second, we resolve a lack of reverse lookup table issue with the presynaptic spike-driven algorithm. The proposed algorithm holds causal updates at postsynaptic spikes until a next presynaptic spike arrival. This approach removes the need of a reverse lookup table required at a postsynaptic spike. We show the implementation of the proposed algorithm in an FPGA device and validate it with a spiking neural network configuration. The experiment results show the proposed algorithm is comparable qualitatively with a conventional STDP learning rule.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call