Abstract

N-methyl-D-aspartate (NMDA) receptors are commonly found post-synaptically; they mediate fast excitatory neurotransmission in the central nervous system. In this study, we provide immunocytochemical data supporting the existence of presynaptic NMDA receptors in GABAergic terminals using polyclonal antisera raised against the C-terminus of the NMDAR1 subunit. At the light microscope level, rich plexuses of NMDAR1-positive varicose fibers were found in various nuclei in the basal forebrain (bed nucleus of stria terminalis, septum, parastrial nucleus, vascular organ of the lamina terminalis), thalamus (paraventricular nucleus, midline nuclei), and hypothalamus (parvocellular paraventricular nucleus, arcuate nucleus, preoptic nucleus, suprachiasmatic nucleus). In the brainstem, labeled fibers were much less abundant and were confined to the ventral tegmental area, periaqueductal gray, parabrachial nucleus, and locus coeruleus. At the electron microscope level, NMDAR1-immunoreactive terminals examined in the bed nucleus of stria terminalis, parvocellular paraventricular hypothalamic nucleus, and arcuate nucleus formed symmetric synapses, contained darkly stained large dense-core vesicles, and displayed gamma-aminobutyric acid (GABA) immunoreactivity. Terminals with similar ultrastructural features were found in the paraventricular thalamic nucleus. These findings demonstrate the existence of NMDAR1 subunit immunoreactivity in subsets of GABAergic terminals, which raises questions about the potential roles and mechanisms of activation of presynaptic NMDA heteroreceptors in the rat central nervous system. The pattern of distribution and ultrastructural features of these boutons suggest that they may arise from local GABAergic projections interconnecting a group of brain structures mediating stress responses and/or other endocrine, autonomic, and limbic functions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call