Abstract

BackgroundThe development of the nervous system involves an initially exuberant production of neurons that make an excessive number of synaptic contacts. The initial overproduction of synapses promotes connectivity. Hebbian competition between axons with different activities (the least active are punished) leads to the loss of roughly half of the overproduced elements and this refines connectivity and increases specificity. The neuromuscular junction is innervated by a single axon at the end of the synapse elimination process and, because of its relative simplicity, has long been used as a model for studying the general principles of synapse development. The involvement of the presynaptic muscarinic ACh autoreceptors may allow for the direct competitive interaction between nerve endings through differential activity-dependent acetylcholine release in the synaptic cleft. Then, the most active ending may directly punish the less active ones. Our previous results indicate the existence in the weakest axons on the polyinnervated neonatal NMJ of an ACh release inhibition mechanism based on mAChR coupled to protein kinase C and voltage-dependent calcium channels. We suggest that this mechanism plays a role in the elimination of redundant neonatal synapses.ResultsHere we used confocal microscopy and quantitative morphological analysis to count the number of brightly fluorescent axons per endplate in P7, P9 and P15 transgenic B6.Cg-Tg (Thy1-YFP)16 Jrs/J mice. We investigate the involvement of individual mAChR M1-, M2- and M4-subtypes in the control of axonal elimination after the Levator auris longus muscle had been exposed to agonist and antagonist in vivo. We also analysed the role of adenosine receptor subtypes (A1 and A2A) and the tropomyosin-related kinase B receptor. The data show that postnatal axonal elimination is a regulated multireceptor mechanism that guaranteed the monoinnervation of the neuromuscular synapses.ConclusionThe three receptor sets considered (mAChR, AR and TrkB receptors) intervene in modulating the conditions of the competition between nerve endings, possibly helping to determine the winner or the lossers but, thereafter, the final elimination would occur with some autonomy and independently of postsynaptic maturation.

Highlights

  • The development of the nervous system involves an initially exuberant production of neurons that make an excessive number of synaptic contacts

  • The three receptor sets considered intervene in modulating the conditions of the competition between nerve endings, possibly helping to determine the winner or the lossers but, thereafter, the final elimination would occur with some autonomy and independently of postsynaptic maturation

  • In certain weak motor axons, this mechanism can depress ACh release and even disconnect synapses [13,14,15,16,17]. We suggest that this mechanism plays a central role in the elimination of redundant neonatal synapses because functional axonal withdrawal can be reversed by muscarinic acetylcholine receptor (mAChR), protein kinase C (PKC) or voltage-dependent calcium channels (VDCC) block [17, 18]

Read more

Summary

Introduction

The development of the nervous system involves an initially exuberant production of neurons that make an excessive number of synaptic contacts. The neuromuscular junction is innervated by a single axon at the end of the synapse elimination process and, because of its relative simplicity, has long been used as a model for studying the general principles of synapse development. Our previous results indicate the existence in the weakest axons on the polyinnervated neonatal NMJ of an ACh release inhibition mechanism based on mAChR coupled to protein kinase C and voltage-dependent calcium channels We suggest that this mechanism plays a role in the elimination of redundant neonatal synapses. The development of the nervous system involves the initial overproduction of synapses, which promotes connectivity, and a subsequent activity-dependent reduction in the number of synapses. Because of its relative simplicity, the neuromuscular junction (NMJ) has long been used as a model for studying the general principles of synapse development in an attempt to understand the synapse elimination process [2, 6,7,8,9,10,11,12]

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call