Abstract

Capsaicin-sensitive extrinsic sensory nerves and submucosal vasodilator neurons provide important vasodilator input to submucosal arterioles, but relatively little is known about the signaling between these populations and the sympathetic vasoconstrictor innervation. This study examined whether release of sympathetic purines can modulate dilator nerves. In vitro submucosal preparations from guinea pig ileum were modified to leave the parent mesenteric artery intact so that perivascular sympathetic and extrinsic afferent nerves could be activated by a bipolar stimulating electrode placed on the parent artery, and submucosal vasodilator neurons were activated using focal electrodes placed on submucosal ganglia. The outside diameter of submucosal arterioles was monitored using videomicroscopy, and dilator responses were examined after preconstricting vessels 80-95% with prostaglandin F(2alpha) (400 nM). Mesenteric nerve stimulation evoked a frequency-dependent dilation, with suramin (100 microM) present throughout to inhibit P(2X) receptor-mediated vasoconstrictions. In the presence of guanethidine (10 microM) to inhibit sympathetic purine release, superfusion of ATP (200 nM-6 microM) caused a concentration-dependent inhibition of nerve-evoked dilations. Vasodilations to substance P (10 nM) were not inhibited by ATP in the presence of guanethidine, implicating a presynaptic effect of ATP on neurotransmitter release. The inhibitory effect of ATP was blocked by the adenosine receptor antagonist 8-phenyltheophylline (8-PT; 10 microM). In addition, 8-PT increased the amplitude of nerve-evoked dilations, suggesting a tonic inhibitory effect of adenosine receptors on vasodilator release. Dilations evoked by electrical stimulation of submucosal ganglia were also inhibited almost 50% by ATP (2 microM) and its nonhydrolyzable analog, alpha,beta-methylene-ATP (10 microM). These data suggest that sympathetic varicosities release ATP or a related purine that can act at presynaptic adenosine receptors on extrinsic sensory and submucosal vasodilator neurons to inhibit neurotransmitter release.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call