Abstract

Recently, we reported that auditory fear conditioning leads to the presynaptic potentiation at lateral amygdala to basal amygdala (LA-BA) synapses that shares the mechanism with high-frequency stimulation (HFS)-induced long-term potentiation (LTP) ex vivo. In the present study, we further examined the molecular mechanisms underlying the HFS-induced presynaptic LTP. We found that a presynaptic elevation of Ca2+ was required for the LTP induction. Interestingly, the blockade of presynaptic but not postsynaptic HCN channels with ZD7288 completely abolished LTP induction. While ZD7288 did not alter basal synaptic transmission, the blocker fully reversed previously established LTP, indicating that HCN channels are also required for the maintenance of LTP. Indeed, HCN3 and HCN4 channels were preferentially localized in the presynaptic boutons of LA afferents. Furthermore, an inhibition of either GABAB receptors or GIRK channels eliminated the inhibitory effect of HCN blockade on the LTP induction. Collectively, we suggest that activation of presynaptic HCN channels may counteract membrane hyperpolarization during tetanic stimulation, and thereby contributes to the presynaptic LTP at LA-BA synapses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.