Abstract

Activation of nicotinic acetylcholine receptors (nAChRs) can elicit neurotransmitter release from presynaptic nerve terminals. Mechanisms contributing to cell-and-terminal specific regulation of nAChR-mediated neurotransmitter exocytosis are not fully understood. The experiments discussed here examine how activation of GABAB auto- and hetero-receptors suppress nAChR-mediated release of [3H]-GABA and [3H]-dopamine (3H-DA) from mouse striatal synaptosomes. Activation of presynaptic GABAB receptors with (R)-baclofen decreased both [3H]-GABA and [3H]-DA release evoked by potassium depolarization. However, when nAChRs were activated with ACh to evoke neurotransmitter release, (R)-baclofen had no effect on [3H]-DA release, but potently inhibited ACh-evoked [3H]-GABA release. Inhibition of nAChR-evoked [3H]-GABA release by (R)-baclofen was time sensitive and the effect was lost after prolonged exposure to the GABAB agonist. The early inhibitory effect of GABAB activation on ACh-evoked [3H]-GABA release was partially attenuated by antagonists of the phosphatase, calcineurin. Furthermore, antagonists of protein kinase C (PKC) prevented the time-dependent loss of the inhibitory (R)-baclofen effect on [3H]-GABA release. These results suggest that α4β2*-nAChRs present on GABAergic nerve terminals in the striatum are subject to functional regulation by GABAB autoreceptors that is apparently cell-type specific, since it is absent from DAergic striatal nerve terminals. In addition, the functional modulation of α4β2*-type nAChRs on striatal GABAergic nerve terminals by GABAB autoreceptor activation is time-sensitive and appears to involve opposing actions of calcineurin and PKC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.