Abstract

This study sought to delineate the presynaptic role of the locus coeruleus (LC) on hindlimb primary afferent terminals. Changes in presynaptic function in response to LC stimulation were assessed by measuring the dorsal root potential (DRP), interaction of LC- and peripherally-evoked DRPs, and intraspinal afferent terminal excitability. LC stimulation in unanesthetized, decerebrate cats produced a sequence of early and late positive DRPs succeeded by a small-sized negative DRP. Conditioning the negative DRPs elicited from individual hindlimb nerve branches with LC stimuli led to a decrease in test DRPs. Similarly, there was a predominant decrease in excitability in both large muscle and cutaneous afferent terminals. These data suggest a presynaptic role of the LC in augmenting afferent impulse transmission, presumably through inhibition of tonically active interneurons having axoaxonic contacts on primary afferents; functionally, presynaptic facilitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call