Abstract
The intracellular Ca2+ sensitivity of synaptic vesicle fusion is an important determinant of transmitter release probability, but it is unknown for most CNS synapses. We combined whole-cell membrane capacitance measurements and Ca2+ uncaging at the large calyx of Held nerve terminals to determine the Ca2+ sensitivity of synaptic vesicle fusion at a glutamatergic CNS synapse, independent of recording EPSCs. Capacitance increases measured 30-50 msec after elevating the intracellular Ca2+ concentration ([Ca2+]i) by Ca2+ uncaging were half-maximal at approximately 5 microm [Ca2+]i. At 10 microm [Ca2+]i, capacitance increases reached maximal values (256 +/- 125 fF; mean +/- SD), indicating the depletion of an average pool of approximately 4000 readily releasable vesicles. Vesicle pool depletion was confirmed in cross-depletion experiments, in which capacitance responses were measured after Ca2+ uncaging, or after combined stimuli of prolonged presynaptic depolarizations and Ca2+ uncaging. To analyze the Ca2+-dependent rates of vesicle pool depletion, the capacitance rise after Ca2+ uncaging was fitted with single- or double-exponential functions. The fast time constants of double-exponential fits, and the time constants of single-exponential fits were 2-3 msec at 10-15 microm [Ca2+]i and reached submillisecond values at 30 microm [Ca2+]i. These results suggest that three to five readily releasable vesicles can fuse within <1 msec at each active zone of a calyx of Held, given that [Ca2+]i rises sufficiently high. Submillisecond kinetics of exocytosis are reached at significantly lower [Ca2+]i than at ribbon-type sensory synapses previously investigated by capacitance measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.