Abstract

Genetic alterations in Ca(2+) channel subunits can be used to study the interaction among channel subunits and their roles in channel function. P/Q- and N-type Ca(2+) channels reside at the presynaptic terminal and control the release of neurotransmitter at mammalian central synapses. We used fluorescence imaging techniques to investigate presynaptic Ca(2+) currents and neurotransmitter release at hippocampal Schaffer collateral synapses in both tottering (tg, alpha(1A) subunit) and lethargic (lh, beta(4) subunit) mutant mice. Application of selective toxins revealed a large reduction in presynaptic P/Q-type Ca(2+) transients, from 39% of total in +/+ mice to 6% in tg/tg mice, whereas the proportion of N-type increased from 35 to 68%, respectively. Neurotransmitter release in the tg/tg mutant relied almost exclusively on N-type channels, as shown by the complete blockade of synaptic transmission with omega-conotoxin GVIA. Remarkably, loss of beta4, a subunit predicted to regulate the subcellular targeting and modulation of both P/Q- and N-type channels, resulted in no significant difference in the ratio of Ca(2+) channel subtypes or Ca(2+) dependence of neurotransmitter release in lethargic mice. G-protein-mediated inhibition of Ca(2+) channels was also unaltered. These results indicate that a profound decrease in presynaptic P/Q-type currents leads to dependence of neurotransmitter release on N-type channels. In contrast, absence of beta(4) appears not to compromise either P/Q- or N-type channel function at this hippocampal synapse, implicating rescue of presynaptic Ca(2+) currents by other available beta subunits. The present study reveals compensatory molecular mechanisms in the regulation of presynaptic Ca(2+) entry and neurotransmitter release.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.