Abstract

Persistent use-dependent changes in the intrinsic neuronal excitability determine the long-term dynamics of the activity of these neurons. In synergy with the long-lasting modification of synaptic transmission, such changes in the excitability presumably contribute to the formation of a memory trace in the brain. Nevertheless, neither particular transmembrane ion conductances implicated in the intrinsic plasticity nor the mechanisms of regulation of such conductances have been identified in most neurons where this plasticity was observed. In our model study, we tried to determine those membrane conductances in cerebellar granule cells (GrCs) whose changes can result in a persistent increase in the input resistance and a decrease in the spike threshold observed after high-frequency stimulation of presynaptic neurons. For this purpose, published experimental results were simulated with the use of a slightly modified model of the electroresponsiveness of rat cerebellar GrCs. It was concluded that experimentally observed changes in the input resistance of the neuron, in the minimum current step needed to fire action potentials (APs), in the spike threshold, in the average spike frequency, and in the delay of the first spike may be caused only by changes in the background voltage-independent potassium conductance and persistent sodium conductance. Hyperpolarization-directed shifts in the activation and inactivation curves of fast sodium channels are also possible. The observed changes in the intrinsic excitability evoke the shift in the peak of the frequency-response curve in such a manner that it becomes close to the frequency of oscillations recorded in the cerebellar granular layer during realization of voluntary movements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call