Abstract

Pressurized solids are ubiquitous in nature. Mechanical properties of biological tissues arise from cell turgor pressure and membrane elasticity. Flat contact between cells generate nonlinear forces. In this work, cells are idealized as pressurized elastic membranes in frictionless contact with one another. Contact forces are experimentally measured on rubber-like membranes and computed using finite element analysis (FEA). FEA matches experimental force-indentation relationships from small to large indentations. With the chosen dimensionless numbers, data gather on a master curve. The isobaric force exhibits a 4/3 power law over 1.5 decades of indentation. Forces for other thermodynamic processes (adiabatic, isothermal/osmotic and isochoric) are interpolated from isobaric data. Regarding stiffness, the isochoric process is superlinear contrary to the sublinear isobaric stiffness. Simple force-indentation relationships are given for each process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.