Abstract

A fluidized zero valent iron (ZVI) reactor pressurized by CO(2) gas for controlling pH was employed for nitrate reduction. The proposed CO(2) pressurized system potentially has advantages of using less CO(2) gas and reaching equilibrium pH faster than CO(2)-bubbled system. However, due to weak acid nature of carbonic acid, system pH gradually increased with increasing oxidation of ZVI and reduction of nitrate. As pH increased with progress of reaction, nitrate removal rate decreased continuously. The results indicate that nitrate removal efficiency increases with increasing initial ZVI dosage but reaches plateau at ZVI doses of higher than 8.25gl(-1), and initial nitrate concentration up to 100mg l(-1) as N has minimal impact on the removal efficiency. Unlike the fluidized system with pH control by strong acid reported in our pervious study, near 100% of nitrogen recovery was observed in the current process, indicating that nitrate reduction by ZVI with different pH controlled mechanisms will have different reaction routes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.