Abstract
SummaryWe present a parameter‐free stable maximum‐entropy method for incompressible Stokes flow. Derived from a least‐biased optimization inspired by information theory, the meshfree maximum‐entropy method appears as an interesting alternative to classical approximation schemes like the finite element method. Especially compared with other meshfree methods, e.g. the moving least‐squares method, it allows for a straightforward imposition of boundary conditions. However, no Eulerian approach has yet been presented for real incompressible flow, encountering the convective and pressure instabilities. In this paper, we exclusively address the pressure instabilities caused by the mixed velocity‐pressure formulation of incompressible Stokes flow. In a preparatory discussion, existing stable and stabilized methods are investigated and evaluated. This is used to develop different approaches towards a stable maximum‐entropy formulation. We show results for two analytical tests, including a presentation of the convergence behavior. As a typical benchmark problem, results are also shown for the leaky lid‐driven cavity. The already presented information‐flux method for convection‐dominated problems in mind, we see this as the last step towards a maximum‐entropy method capable of simulating full incompressible flow problems. Copyright © 2015 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Fluids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.