Abstract
A low-density wind tunnel called the Mars wind tunnel, has been developed at Tohoku University that can produce a high subsonic flow at low pressures for aerodynamic measurements of low-Reynolds-number aircraft wings aimed at developing aircraft applicable to the atmosphere on the planet Mars. Accurate surface pressure measurements on the wing are essential for analysis of not only aerodynamic performance, including lift and drag, but also the flow fields around the wing. This paper presents a surface pressure measurement technique using pressure-sensitive paint (PSP) applicable for Mars wind tunnel tests under low-pressure conditions. The results show that a PSP composed of palladium tetra(pentafluorophenyl) porphyrin (PdTFPP) and poly[1-(trimethylsilyl)-propyne] [poly(TMSP)] exhibits a high-pressure sensitivity at pressures as low as 1 kPa, and the absolute values of the static pressures measured by the PSP accorded well with the values derived from static pressure sensors used as a reference. A calibration methodology for the non-uniform pressure sensitivity on the test model, including a temperature calibration, is also established. The PSP technique clearly demonstrated pressure sensitivity over a distinctive low-pressure region inside a leading edge separation bubble on a flat plate at low Reynolds numbers.Graphical
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.