Abstract

A series of pressure-sensitive microfluidic gates to regulate liquid flow have been successfully fabricated by patterning surface free energies inside microchannels using self-assembled monolayers in combination with either multistream laminar flow or photolithography. The designs are based on the principles of surface-directed liquid flow previously reported. Aqueous liquids, including protein solutions, are confined to the hydrophilic pathways (or the most hydrophilic pathway) under spontaneous flow conditions and flow into the hydrophobic regions or the less hydrophilic pathways when pressures exceed critical values. A programmable pressure-sensitive liquid delivery device is demonstrated. We have also investigated the initial rate of liquid flow in surface-patterned microchannels under spontaneous flow conditions from both analytical and experimental approaches. The methods described here provide an alternative to the conventional approaches to control liquid flow in the fast-developing field of micro...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.