Abstract
This paper presents a number of novel active fasteners developed to significantly lower disassembly costs during reconditioning, remanufacturing, and recycling of products. In the initial stage of the fastener development process, the applicability of distinct trigger signals for active disassembly (AD) is evaluated. Based on this evaluation, the high robustness of using a pressure increase or decrease as a nondestructive trigger for AD is demonstrated. Since previously proposed pressure-sensitive fasteners face considerable drawbacks upon implementation in electronic products due to the ongoing trend of miniaturization, a second generation of pressure-based active fasteners is developed. Evaluation of these fasteners by means of axiomatic design techniques and prototyping demonstrates that the presented snap-fits, which make use of a closed-cell elastomer foam, are most robust. Subsequently, the contraction forces that closed-celled foams can exert as a function of an increase in ambient air pressure are experimentally determined. Furthermore, the implementation of pressure-sensitive foam-based snap-fits in both a modem and a payment terminal is described. Results of these experiments demonstrate that the contraction force of a cross-linked metallocene polyethylene closed-cell foams can reach up to 6 N/cm2 at an overpressure of 2 bar and that the foam-based snap-fits can be released at a pressure increase of 2 bar.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.