Abstract

The glomerular basement membrane (GBM) is an important component of the filtration barrier that is the glomerular capillary wall. Previously GBM permeability has been investigated only under static pressures and often within a supraphysiological range. We used Matrigel as a model of GBM and formed membranes at the base of filtration chamber. We measured membrane permeability under static and dynamic pressures. Matrigel membranes were size and charge selective toward neutrally and negatively charged dextrans. Their permeability (as measured by hydraulic conductivity) was found to decrease from 1.61 +/- 0.06 to 0.75 +/- 0.07 x 10(-6) cm.s-1.cmH2O-1 as static pressure increased from 6 to 78 cmH2O, an effect attributed to membrane compression. In comparison to static pressure, sinusoidal pressure waves with a mean pressure of 50 cmH2O decreased membrane permeability, e.g., fluid flux was reduced by a maximum of 2% to a value of 5.47 +/- 0.38 x 10(-5) cm/s; albumin clearance was reduced by a maximum of 5.2% to a value of 9.63 +/- 1.06 x 10(-6) ml.cm-2.s-1. Such changes were affected by the frequency of pressure wave application and could be attributed to a switching on and off of the membrane compression effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.