Abstract

Abstract Although BS 5930:1981 describes both Menard and self-boring pressuremeter tests, little guidance is given on test methods. A number of techniques, both stress controlled and strain controlled, have been used and it has been shown that for clays the test technique has a significant influence on the derived strength and modulus parameters. When a pressuremeter test is carried out in a clay, it is assumed that shearing occurs under undrained conditions. However, in addition to immediate shear strain, some creep and local consolidation will occur in the soil around the expanding borehole. These two phenomena are time-dependent and variations in test technique will affect the test data and hence the derived strength and modulus values. To obtain a better understanding of these effects, pressuremeter tests have been studied both experimentally and numerically. Experimentally, pressuremeter tests have been simulated by expanding cylindrical cavities in samples of three clays prepared with known stress history and the results compared with numerical predictions where the effects of immediate shear, creep and consolidation can be separated. The experimental results compare well with the numerical predictions. This has given a new insight into the behaviour of clay soils during pressuremeter tests. The results indicate that any simple standardization of pressuremeter test technique should be approached with caution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.