Abstract

Two-dimensional (2D) materials and their heterostructures have attracted a lot of attention due to their unique electronic and optical properties. MoS2 as the most typical 2D semiconductors has great application potential in thin film transistors, photodetector, hydrogen evolution reaction, memory device, etc. However, the performance of MoS2 devices is limited by the contact resistance and the improvement of its contact quality is important. In this work, we report the experimental investigation of pressure-enhanced contact quality between monolayer MoS2 and graphite by conductive atom force microscope (C-AFM). It was found that at high pressure, the contact quality between graphite and MoS2 is significantly improved. This pressure-mediated contact quality improvement between MoS2 and graphite comes from the enhanced charge transfer between MoS2 and graphite when MoS2 is stretched. Our results provide a new way to enhance the contact quality between MoS2 and graphite for further applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.