Abstract

ABSTRACT This study proposes BN as a new sintering aid for pressureless solid-state sintering of SiC ceramics. The full densification of SiC ceramics for 0.5–2.7 wt% BN addition showed the composition tolerance of the newly developed ceramics. The electrical resistivity decreased by an order of magnitude (107→106 Ω·cm) as BN content increased from ~0.5 to ~0.9 wt% because of the increased BN-derived B doping in the SiC lattice. A further increase in BN content had no significant effect on the electrical resistivity, which is attributed to the limited solubility of B in the SiC lattice. The thermal conductivity decreased with increasing BN content owing to increased phonon scattering at B-doped sites and the thermally insulating BN phase located at the grain boundaries. The fracture toughness increased with increasing BN content owing to interfacial debonding at the weak SiC-BN interfaces. However, intrinsically weak BN grains with low hardness were responsible for reduced flexural strength and hardness with increasing BN content.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.