Abstract

Al 2O 3 + 5 vol% SiC composite ceramics were prepared via a conventional powder processing route followed by pressureless sintering. Commercially available Al 2O 3 and SiC powders were milled together in an aqueous suspension. The slurry was freeze granulated, and green bodies were obtained by cold isostatic pressing of the granules. Pressureless sintering was carried out in a nitrogen atmosphere at 1750 and 1780 °C. Near full density (>99%) was achieved at 1780 °C. Densification at the lower sintering temperature was promoted by smaller additions of MgO. Vickers hardness and indentation fracture toughness varied around 18 GPa and 2.3 MPa m 1/2 after sintering at 1780 °C. Transmission electron microscopy revealed that the SiC particles were located predominantly to the interior of the matrix grains and well distributed throughout the composite microstructures. The intragranular particles had sizes in the range 50–200 nm while the intergranular particles were larger, typically 200–500 nm in diameter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.