Abstract

Heat generation of uranium dioxide (UO2) powder and its pressureless rapid sintering behaviors have been studied using a high‐frequency induction heating apparatus. The porous graphite housing has been used to prevent heat loss and to preheat the uranium oxides, simultaneously. At an elevated temperature, UO2 powder generated extra heat by itself. The synergism of individual heat generation between the graphite and UO2 powder could effectively heat the UO2 to the sintering temperature of 1700°C. Using this process, densification behavior of cylindrical and disk‐type UO2 green pellets according to the heating rate and grain structure of sintered UO2 pellets were investigated. Rapid sintering caused a large crack around the circumference of the sintered pellet. The formation of cracks could be avoided when the heating rate or sample dimension are properly reduced. A dense and crack‐free UO2 pellet with a relative density of up to 96% was produced within 5 min of the process time. The induction heat sintering process can be a potential candidate for the rapid fabrication of ceramics and composites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.