Abstract

The “sticky particles” model at the discrete level is employed to obtain global solutions for a class of systems of conservation laws among which lie the pressureless Euler and the pressureless attractive/repulsive Euler–Poisson system with zero background charge. We consider the case of finite, nonnegative initial Borel measures with finite second-order moment, along with continuous initial velocities of at most quadratic growth and finite energy. We prove the time regularity of the solution for the pressureless Euler system and obtain that the velocity satisfies the Oleinik entropy condition, which leads to a partial result on uniqueness. Our approach is motivated by earlier work of Brenier and Grenier, who showed that one-dimensional conservation laws with special initial conditions and fluxes are appropriate for studying the pressureless Euler system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.