Abstract
The quasi-one-dimensional material PdTeI exhibits unusual electronic transport properties at ambient pressure. Here, we systematically investigate both the structural and electronic responses of PdTeI to external pressure, through a combination of electrical transport, synchrotron X-ray diffraction (XRD), and Raman spectroscopy measurements. The charge density wave (CDW) order in PdTeI is fragile and the transition temperature TCDW decreases rapidly with the application of external pressure. The resistivity hump is indiscernible when the pressure is increased to ~1 GPa. Upon further compression, the resistivity dropping is observed approximately ~15 GPa and zero resistance is established above ~20 GPa, suggesting the occurrence of superconductivity. Combined XRD and Raman data evidence that the emergence of superconductivity is accompanied by a pressure-induced amorphization of PdTeI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.