Abstract

Abstract High-pressure behaviors of AlN:Mg and AlN:Co nanowires have been investigated by in situ angle dispersive synchrotron X-ray diffraction up to 41.5 GPa and 38.2 GPa, respectively. Their corresponding pressure-induced wurtzite-to-rocksalt phase transitions start at 17.7 GPa and 15.0 GPa and complete at 33.2 GPa and 31.0 GPa, respectively. The phase-transition routes are not affected by the doped ions, while the phase transition pressures are lower than that of pure AlN nanowires. The distinct high-pressure behaviors are ascribed to the doped ions, which reduce the formation energy of cation vacancies and induce Al vacancies defects together with substitution defects, resulting in lattice distortion and affecting structural stability and phase transition pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call