Abstract
The magnetic and structural phase diagram of equiatomic FeCo has been studied up to 45 GPa using $K$-edge x-ray magnetic circular dichroism, x-ray absorption near edge spectroscopy, x-ray diffraction, and supporting density-functional-theory-based calculations. FeCo foils with different degrees of chemical order were obtained by magnetron sputtering. Our results show that Fe${}_{0.5}$Co${}_{0.5}$ undergo the bcc ferromagnetic to hcp nonferromagnetic transition in the 30--45 GPa pressure range. Interestingly, the chemical order, i.e., the relative arrangements of Fe and Co atoms, plays a major role in affecting the high-pressure structural and magnetic phase diagram of these alloys. This result is confirmed by first-principles modeling of different structures of equiatomic FeCo alloy. Moreover, the total-energy analysis reveals a strong competition between different magnetic hcp states upon compression. A possible emergence of antiferromagnetism is emphasized and requires further experimental investigation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.