Abstract

The response of biurea to high pressures is investigated by in situ Raman spectroscopy and angle-dispersive X-ray diffraction (ADXRD) in a diamond anvil cell up to ∼5 GPa. Raman scattering measurements indicate a phase transition occurring over the pressure range of 0.6–1.5 GPa. Phase transition is confirmed by changes in the ADXRD spectra with symmetry transformation from C2/c to a possible space group P2/n. Upon total release of pressure, the diffraction spectrum returns to its initial state, which implies that the transition observed is reversible. We discuss variations in the Raman spectra, including splitting of modes, appearance of new modes, and abrupt changes in the slope of the frequency shift curves at several pressures. We propose that the phase transition observed in this study is attributed to rearrangement of the hydrogen-bonded networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.