Abstract
Functionalized MXenes have gained increasing interest in the fields of thermoelectric materials, hydrogen storage, and so forth. In this work, pressure-induced band modulation and optical properties of the Ti2CO2 monolayer are investigated by using density functional theory with the hybrid (HSE06) functional. The calculation reveals that Ti2CO2 MXenes under pressure are stable because of the positive Ecoh. Ti2CO2 undergoes a semiconductor-to-metal phase transition at about 7 GPa. The metallization of Ti2CO2 mainly results from the Ti-d state. Research indicates that there exist strong interactions between Ti-d and C-p, and Ti-d and O-p states, which are further confirmed by the charge analysis. In addition, the absorption is enhanced in the visible region with increasing pressure. We also observed some new absorption peaks in the visible region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.