Abstract

Chemical looping reforming of methane (CLRM) with Fe-based oxygen carriers is widely acknowledged as an environmentally friendly and cost-effective approach for syngas production, however, sintering-caused deactivate of oxygen carriers at elevated temperatures of above 900 °C is a longstanding issue restricting the development of CLRM. Here, in order to reduce the reaction temperature without compromising the chemical-looping CH4 conversion efficiency, we proposed a novel operation scheme of CLRM by manipulating the reaction pressure to shift the equilibrium of CH4 partial oxidation towards the forward direction based on the Le Chatelier's principle. The results from thermodynamic simulations showed that, at a fixed reaction temperature, the reduction in pressure led to the increase in CH4 conversion, H2 and CO selectivity, as well as carbon deposition rate of all investigated oxygen carriers. The pressure-negative CLRM with Fe3O4, Fe2O3 and MgFe2O4 could reduce the reaction temperature to below 700 °C on the premise of a satisfactory CLRM performance. In a comprehensive consideration of the CLRM performance, energy consumption, and CH4 requirement, NiFe2O4 was the Fe-based OCs best available for pressure-negative CLRM, especially for an excellent syngas yield of 23.08 mmol/gOC. This study offered a new strategy to address sintering-caused deactivation of materials in chemical looping from the reaction thermodynamics point of view.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.