Abstract

In a semimetal, both electrons and holes contribute to the density of states at the Fermi level. The small band overlaps and multiband effects engender novel electronic properties. We show that a moderate hydrostatic pressure effectively suppresses the band gap in the elemental semiconductor black phosphorus. An electronic topological transition takes place at approximately 1.2GPa, above which black phosphorus evolves into a semimetal state that is characterized by a colossal positive magnetoresistance and a nonlinear field dependence of Hall resistivity. The Shubnikov-de Haas oscillations detected in magnetic field reveal the complex Fermi surface topology of the semimetallic phase. In particular, we find a nontrivial Berry phase in one Fermi surface that emerges in the semimetal state, as evidence of a Dirac-like dispersion. The observed semimetallic behavior greatly enriches the material property of black phosphorus and sets the stage for the exploration of novel electronic states in this material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.