Abstract

The structure of liquid Na(2)Ge(2)O(5).H(2)O, a silicate melt analog, has been studied with Raman spectroscopy to pressures of 2.2 gigapascals. Upon compression, a peak near approximately 240 wavenumbers associated with octahedral GeO(6) groups grows relative to a peak near approximately 500 wavenumbers associated with tetrahedral GeO(4) groups. This change corresponds to an increase in octahedral germanium in the liquid from near 0% at ambient pressures to >50% at a pressure of 2.2 gigapascals. Silicate liquids plausibly undergo similar coordination changes at depth in the Earth. Such structural changes may generate decreases in the fusion slopes of silicates at high pressures as well as neutrally buoyant magmas within the transition zone of the Earth's mantle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.