Abstract
Pressure-induced conformational changes in two proteins, bovine serum albumin (BSA) and immunoglobulin G (lgG), were studied to assess the application of hyperbaric manipulation to the dissociation of antigen-antibody complexes. Antigen-antibody dissociation is important in the product-recovery phase of immunoadsorption, an affinity purification process. Three techniques were used in parallel for this study, including fluorescence, pourier transform infrared (FTIR) spectroscopy, and the enzyme-linked immunosorbent assay (ELISA). Employing a fluorescent probe, fuorescent intensity measurements were used to detect protein conformational changes. FTIR spectroscopy was used to determine changes in protein secondary structure induced by high pressure, while the ELISA test was used to examine antibody recognition after the proteins had been pressure-treated. The results from this work demonstrate that IgG is resistant to conformational changes induced by pressures below 2 kbar. In contrast, BSA undergoes reversible conformational changes in this pressure range. However, these conformational changes are not reflected in tests measuring antibody recognition. These findings indicate that IgGs have the potential to be used as recycled ligands in immunoadsorption separation processes. Different antigens that are being considered for purification by immunoadsorption and separated by means of high pressure could be screened by the methods disclosed to determine their stability under high pressure conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA)/Protein Structure and Molecular Enzymology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.