Abstract

This study analyzes the pressure-flow characteristics during the peristaltic pumping of power law fluids in an axi-symmetric non-uniform distensible tube. The analyzed geometry is of a diverging shape that is common in several biological flow conduits, especially in mammals. Using the Fourier series, the dimensionless wall coordinates for sinusoidal, triangular, trapezoidal, and square wave forms are obtained to simulate wall movement. Equations expressing the pressure-flow rate relationship for different wall shapes are developed from the wave equation. Pressure-flow and velocity plots are obtained by solving the equations numerically. The results indicate that there is significant difference in pressure-flow relationship between Newtonian and non-Newtonian fluid. Also, the maximum flow rate can be achieved when the wall movement follows a square wave form.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.