Abstract

Due to its versatile potential applications, nanofluidic devices have drawn much attention of researches in various fields. Among these, pressure-driven power generation is considered as a candidate for the next generation alternative green energy source, and pressure-driven ion separation (nanofiltration) for desalination. Aiming to achieve a better performance in these two representative cases, a cylindrical nanopore having different types of non-uniform surface charge profile is adopted, and its performance under various conditions assessed. We show that lower the surface charge density near the nanopore inlet region can suppress the effect of ion concentration polarization (ICP) and improve the selectivity, thereby enhancing appreciably its power generation performance. For a fixed averaged surface charge density, if the bulk salt concentration is low, the higher the surface charge density near the nanopore openings, the better its performance. The degree of ICP can be alleviated by applying a sufficiently large pressure difference. Although previous studies showed that salt rejection is influenced significantly by the profile of the electric field inside a nanopore, we find that the electric field at nanopore openings also plays a role. Through choosing appropriately the surface charge profile, it is possible to solve the trade-off between rejection and flow rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.