Abstract

Regional contemporaneous faults of the Texas coastal area are formed on the seaward flanks of deeply buried linear shale masses characterized by low bulk density and high fluid pressure. From seismic data, these masses, commonly tens of miles in length, have been observed to range in size up to 25 mi in width and 10,000 ft vertically. These features, aligned subparallel with the coast, represent residual masses of undercompacted sediment between sandstone-shale depoaxes in which greater compaction has occurred. Most regional contemporaneous fault systems in the Texas coastal area consist of comparatively simple down-to-basin faults that formed during times of shoreline regression, when periods of fault development were relatively short. In cross-sectional view, faults in hese systems flatten and converge at depth to planes related to fluid pressure and form the seaward flanks of underlying shale masses. Data indicate that faults formed during regressive phases of deposition were developed primarily as the result of differential compaction of adjacent sedimentary masses. These faults die out at depth near the depoaxes of the sandstone-shale sections. Where subsidence exceeded the rate of deposition, gravitational faults developed where basinward sea-floor inclination was established in the area of deposition. Some of these faults became bedding-plane type when the inclination of basinward-dipping beds equaled the critical slope angle for gravitational slide. Fault patterns developed in this manner are comparatively complex and consist of one or more gravitational faults with numerous antithetic faults and related rotational blocks. Postdepositional faults are common on the landward flanks of deeply buried linear shale masses. Many of these faults dip seaward and intersect the underlying low-density shale at relatively steep angles. Conclusions derived from these observations support the concept of regional contemporaneous fault development through sedimentary processes where thick masses of shale are present and where deep-seated tectonic effects are minimal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.